Epo-Weld™ HTCP-550

Ultra High Temperature Ceramic-Metallic Thixotropic Sealant

PRODUCT DESCRIPTION

Incure Epo-Weld TM HTCP-550 is a one-part, ultra-high temp metal-filled ceramic, water-based paste designed for repair of joints and defects in metals such as stainless steel, steel, cast aluminium and cast iron. Widely in automotive, aerospace industries, foundries, incineration and exhaust stacks. Unique hybrid formulation of ceramics and stainless steel allows it to be used in ultra-high temp environments of up to 1,100°C (2,000°F). Incure HTCP-550 is ideal for use on repairs up to 10mm (3/8") in applications such as ducting, boilers, furnaces, turbines, manifolds and heat exchangers, etc.

UNCURED PROPERTIES

Chemical Type	ainless Steel and Ceram	Mix Ratio	N.A.
Appearance	Metallic Grey	Density, g/ml	1.53
Viscosity, cP (rpm)	Paste	Pot-Life @25°C (hrs)	TBA

CURE SCHEDULE

Recommended Curing Temperature				
First Cure	6h @ 25°C (6h @ 77°F)	Followed By	N.A.	
Followed By	3h @ 95°C (3h @ 203°F)	Followed By (with Liquid Binder*)	N.A.	

^{*}For better moisture resistance, hydrophobic liquid binder (sold separately) can be added as an alternative to water. Please consult Incure Technical Service for the appriopriate liquid binder.

CHEMICAL RESISTANCE TABLE (Not Applicable for this Product)

		(,
ACIDS		SALTS	
CH3COOH Acetic Acid, 5%	Softens	NaCl Sodium Chloride, 5%	No Effect
CH3COOH Acetic Acid, Bath	Destroyed	ALKALIS	
H2CrO4 Chromic Acid, 10%	Discolored	NH4OH Ammonia Hydroxide, 5%	No Effect
C6H8O7 Citric Acid, 50%	No Effect	NaOH Sodium Hydroxide, 10%	No Effect
HCI Hydrochloric Acid, 50%	No Effect	NaOH Sodium Hydroxide, 50%	No Effect
HCI Hydrochloric Acid, 50%	No Effect	ORGANIC FLUIDS	
C3H6O3 Lactic Acid, 5%	No Effect	Fuel Oil	No Effect
HNO3 Nitric Acid, 10%	No Effect	C8H18 Gasoline	No Effect
HNO3 Nitric Acid, 10%	No Effect	Hyraulic Oil	No Effect
H3PO4 Phosphoric Acid, Concent	No Effect	Jet Fuel	No Effect
H2SO4 Sulphuric Acid, 10%	No Effect	Mineral Spirits	No Effect
H2SO4 Sulphuric Acid, 50%	No Effect	Toulene	No Effect
H2SO4 Sulphuric Acid, Concentra	Etched	Xylene	No Effect

CURED PROPERTIES

Hardness, Shore	N.A.
Linear Shrinkage, in/in	N.A.
Chemical Resistance	N.A.
Service Temperature, °C (°F)	Up to 1,100°C (Up to 2,000°F)
Flexural Strength, PSI (ASTM D790)	N.A.
Tensile Shear, PSI (ASTM D1002-94)	N.A.
CTE, in/in°F x 10-6 °C	N.A.
Thermal Conductivity, Btu-in/hr-ft2 °F	N.A.
Volume Resistivity, ohms-cm@RT	N.A.
Dielectric Strength, volts/mil	N.A.
Dielectric Constant, 1.0kHz	N.A.
Dissipation Factor	N.A.

Incure, Inc. 1 Hartford Square, Box 16 West, Suite C-3, New Britain, CT 06052, USA Tel: (860) 748 2979 support@uv-incure.com Incure Adhesives Manufacturing Pte Ltd 33 Ubi Avenue 3 #04-23, Vertex Tower B, Singapore 408868 Tei: (65) 6509 3670 www.uv-incure.com

APPLICATION PROCEDURES

For two part epoxy systems should be thoroughly mixed until it is uniform. High viscosity systems, pre-heat Part A and Part B separately to 35° - 50°C (95°F to 122°F) to facilitate ease of mixing. Apply product using a spatula, putty knife or caulking gun. Apply to both surfaces and maintain glue line of less than 250 microns (10 mils). Pressure should be applied to the assembled parts to get rid of any air trapped and minimise any warrange

For HTCP products, cross sections of 3.2mm to 6.4mm (1/8" - 1/4"), consider applications in multiple times to prevent blistering. As a guide, all cross-section joints should not exceed12.5mm to 20mm (1/2" - 3/4").

SURFACE PREPARATION

All bonding surfaces must be free from contaminants such as grease, lose particles, oils, corrosive chemical stains etc. Rough or porous material such as metal castings should be baked at high temperature to burn off any embedded contaminants, especially trapped oils and chemicals. Smooth metal surfaces should ideally be abrasive blasted to 0.25mm (0.001") for optimum results.

STORAGE AND PREPARATION FOR USE

All Epo-Weld™ products should be stored in original containers (or replacement containers of similar material) in room temperature. Use a bigger container (twice the volume of the mixed contents) and leave mixed materials to settle (possibly some out-gassing) for 24hours.

NOTE

The data contained in this document are furnished for information only. We cannot assume responsibility for the results obtained by others over whose methods we have no control. It is the user's responsibility to determine suitability for the user's purpose of any production methods mentioned herein. INCURE will not be liable for any indirect, special, incidental or consequential loss or damage arising from this INCURE product, regardless of the legal theory asserted. INCURE recommends that each user adequately test its proposed use and application before repetitive use, using this data as a guide.