

Epo-Weld™ HTE-5355

High Temperature, High Vibration Resistance Bonding Epoxy

PRODUCT DESCRIPTION

Incure Epo-Weld[™] HTE-5355 is a two-part (100:13) epoxy system designed for bonding and potting applications operating at high temperatures. Fast setting, it offers high vibration resistance, shock absorbance bond strength. Tensile strength of 2,500 PSI and flexural strengths of up to 12,000 PSI is achievable on full cure within 24hrs at room temperature and 4hrs at 80°C. Incure HTE-5355 delivers outstanding performance on applications within the -65°C to 205°C (-85°F to 400°F) temperature range. Meets NASA outgassing requirements.

UNCURED PROPERTIES

Chemical Type	Epoxy	Mix Ratio	100:13
Appearance	Light Grey	Density, g/ml	1.55
Viscosity, cP (rpm)	Gel	Pot-Life @25°C (hrs)	> 8.0

CURE SCHEDULE

Recommended Curing Temperature				
First Cure	1d @ 25°C (1d @ 77°F)	Followed By	1h @ 25°C (1h @ 77°F)	
Followed By	N.A.	Followed By (with Liquid Binder)	4h @ 80°C (4h @ 176°F)	

CHEMICAL RESISTANCE TABLE (Not Applicable for this Product)

			-
ACIDS		SALTS	
CH3COOH Acetic Acid, 5%	Softens	NaCl Sodium Chloride, 5%	No Effect
CH3COOH Acetic Acid, Bath	Destroyed	ALKALIS	
H2CrO4 Chromic Acid, 10%	Discolored	NH4OH Ammonia Hydroxide, 5%	No Effect
C6H8O7 Citric Acid, 50%	No Effect	NaOH Sodium Hydroxide, 10%	No Effect
HCI Hydrochloric Acid, 50%	No Effect	NaOH Sodium Hydroxide, 50%	No Effect
HCI Hydrochloric Acid, 50%	No Effect	ORGANIC FLUIDS	
C3H6O3 Lactic Acid, 5%	No Effect	Fuel Oil	No Effect
HNO3 Nitric Acid, 10%	No Effect	C8H18 Gasoline	No Effect
HNO3 Nitric Acid, 10%	No Effect	Hyraulic Oil	No Effect
H3PO4 Phosphoric Acid, Concent	No Effect	Jet Fuel	No Effect
H2SO4 Sulphuric Acid, 10%	No Effect	Mineral Spirits	No Effect
H2SO4 Sulphuric Acid, 50%	No Effect	Toulene	No Effect
H2SO4 Sulphuric Acid, Concentra	Etched	Xylene	No Effect

CURED PROPERTIES

· · · · · · · · · · · · · · · · · · ·		
Hardness, Shore	D80 to D90	
Linear Shrinkage, in/in	0.003	
Chemical Resistance	Good	
Service Temperature, °C (°F)	-65°C to 205°C (-85°F to 400°F)	
Flexural Strength, PSI (ASTM D790)	12,000	
Tensile Shear, PSI (ASTM D1002-94)	2,500	
CTE, in/in°F x 10 ⁻⁶ °C	18	
Thermal Conductivity, Btu-in/hr-ft ² °F	-	
Volume Resistivity, ohms-cm@RT	1.0E+15	
Dielectric Strength, volts/mil	465	
Dielectric Constant, 1.0kHz	4.20	
Dissipation Factor	0.04	

Incure, Inc. 1 Hartford Square, Box 16 West, Suite C-3, New Britain, CT 06052, USA Tel: (860) 748 2979 support@uv-incure.com

Incure Adhesives Manufacturing Pte Ltd 33 Ubi Avenue 3 #04-23, Vertex Tower B, Singapore 408868 Tel: (65) 6509 3670 www.uv-incure.com

APPLICATION PROCEDURES

For two part epoxy systems should be thoroughly mixed until it is uniform. High viscosity systems, pre-heat Part A and Part B separately to 35° - 50°C (95°F to 122°F) to facilitate ease of mixing. Apply product using a spatula, putty knife or caulking gun. Apply to both surfaces and maintain glue line of less than 250 microns (10 mils). Pressure should be applied to the assembled parts to get rid of any air trapped and minimise any warpage.

For HTCP products, cross sections of 3.2mm to 6.4mm (1/8" - 1/4"), consider applications in multiple times to prevent blistering. As a guide, all cross-section joints should not exceed12.5mm to 20mm (1/2" - 3/4").

SURFACE PREPARATION

All bonding surfaces must be free from contaminants such as grease, lose particles, oils, corrosive chemical stains etc. Rough or porous material such as metal castings should be baked at high temperature to burn off any embedded contaminants, especially trapped oils and chemicals. Smooth metal surfaces should ideally be abrasive blasted to 0.25mm (0.001") for optimum results.

STORAGE AND PREPARATION FOR USE

All Epo-Weld[™] products should be stored in original containers (or replacement containers of similar material) in room temperature. Use a bigger container (twice the volume of the mixed contents) and leave mixed materials to settle (possibly some out-gassing) for 24hours.

NOTE

The data contained in this document are furnished for information only. We cannot assume responsibility for the results obtained by others over whose methods we have no control. It is the user's responsibility to determine suitability for the user's purpose of any production methods mentioned herein. INCURE will not be liable for any indirect, special, incidental or consequential loss or damage arising from this INCURE product, regardless of the legal theory asserted. INCURE recommends that each user adequately test its proposed use and application before repetitive use, using this data as a guide.